- 부부 사이에서의 협상
- 직장 내에서의 협상
- 룸메이트와의 협상
협상 또는 교섭: 분쟁이 발생했을 경우 양 당사자가 대화로 분쟁을 해결하는 방법
게임이론
1921년 보렐, 갈등과 대립의 전략적 측면을 연구
폰 노이만(John von Neumann) 1928년, 논문으로 갈등과 대립의 이론적 기초 마련, 아직 수학적으로도 난해하고, 용도도 이해하기 어려움.
오스카 모르겐슈테른 (Oskar Morgenstern), 노이만과 공동 연구, 《게임 이론과 경제 행동》(Theory of Games and Economic Behavior, 1944)발표. 노이만이 이론적인 부분의 대부분을 담당하고, 경제 분석의 대부분은 모르겐슈테른이 담당. 경제 상황에서 분쟁 상태에 있는 여러 주체와 이해 관계, 불완전한 정보, 합리적인 결정은 우연히 같은 요소의 존재에 대한 분석에서 시작되어 실제 정세는 이론적으로 확립할 수 있는 게임 모델로 발전.
이 게임 이론이 처음 적용된 전쟁은 제2차 세계 대전. 노이만에게 배운 존 츄키는 게임 이론에 확률론을 도입하여 최소의 손실로 수행할 수 있는 전략 폭격 계획을 미군에 조언.
그 후 이 이론은 1950년대 많은 학자들에 의해 광범위하게 연구되었고, 1970년대에는 자연선택에 의한 종의 진화를 포함한 동물의 행동연구에 적용.
게임이론은 다양한 분야에서 중요한 연구 도구로 인식, 8명의 게임이론학자들이 노벨 경제학상 수상, 존 메이나드 스미스(John Maynard Smith)는 생물학에 게임이론을 적용해 Crafoord Prize을 수상.
한 개인의 전략적 상황(자신의 의사결정에 의한 성공이 다른 사람의 선택에 의존적인 상황)에서의 행동을 수학적으로 설명하고자 한다. 처음에는 제로섬 게임(zero sum game, 한 개인이 다른 사람의 이익을 빼앗는 상황)에서의 경쟁을 분석하기 위해 개발되었으나, 지금은 다양한 조건의 광범위한 상호 작용을 다룰 수 있도록 확장되었음. 오늘날 게임이론은 사회과학의 이성적인 부분을 다루는 마치 우산처럼 드리워진 통합된 이론으로 사회라는 것을 더 확장하여 인간뿐 아니라 컴퓨터, 동식물의 상호작용(interaction)까지 포괄하고 있음.
전통적인 게임이론의 응용은 게임에서의 균형점(각 개체들이 자신의 행동을 바꾸지 않는 전략들의 집합)을 찾는 것이다. 이러한 아이디어를 바탕으로 많은 균형개념들이 개발되었다. 이 중 내시 균형(Nash equilibrium)이 가장 유명하다. 이런 균형개념은 중복되거나 비슷하기도 하지만, 적용되는 분야에 따라 상이하게 발전되어 왔다. 이런 방법론은 비판도 없지 않고, 특정 균형개념의 적절성이나 전체 균형개념들의 적절성, 더 일반적으로는 수학 모델들의 유용성에 대한 토론이 아직도 이어지고 있다.
게임의 형태
게임이론에서 연구하는 게임들은 잘 정의된 수학적 객체들이다. 하나의 게임은 몇 명의 참가자(행위자, actor)와 이런 참가자들이 할 수 있는 행동들(전략, strategy), 그리고 전략들의 조합에 따라 받게 되는 참가자들의 보상(payoff)으로 구성된다. 대부분의 협조적 게임들은 특성함수형(characteristic function form)으로 표현되는 반면, 전개형(extensive form)과 일반형(normal form)은 비협조적인 게임을 정의하는 데 사용된다.
전개형은 순서가 있는 게임을 정형화하는 데 사용된다. 이런 게임들은 종종 옆의 그림처럼 (거꾸로 된) 나무 모양으로 표현된다.
일반형 게임은 주로 동시게임(모든 참가자들이 동시에 행동하는 게임)이거나 적어도 다른 사람의 행동을 모르는 상황에서 펼쳐지는 게임을 표현한다. 만약 한 참가자가 다른 게임 참여자의 선택에 대해 조금이라도 정보를 가지게 된다면 이 게임은 주로 전개형(extensive)으로 표현된다.
게임의 유형; 협조적 게임과 비협조적 게임
만약 게임 참여자들이 구속력 있는 약속을 맺을 수 있다면 그 게임을 협조적이라 한다. 예를 들어 법적 규제가 참여자들이 반드시 약속을 지키도록 요구하는 경우다. 비협조적 게임에서는 이것이 가능하지 않다.
협조적 게임에서는 종종 참여자 간의 의사소통이 허용된다. 그러나 비협조적 게임에서는 허용되지 않는다.
코멘트를 달아주세요!